
ZOTONIC DRIVE THROUGH
A QUICK INTRODUCTION

ZOTONIC DRIVE THROUGH

OVERVIEW — WHAT IS ZOTONIC?

▸ CMS/Framework

▸ Erlang

▸ PostgreSQL

▸ Sweet spot

▸ Batteries included

ZOTONIC DRIVE THROUGH

OVERVIEW — CMS / FRAMEWORK

▸ Extensible, modular system.

▸ All functionality is implemented using modules.

▸ Or a site, which is a special module.

▸ Lots included in the base system.

▸ Admin / media handling / SEO / SSL / etc.

▸ Virtual hosting - many sites on a single system.

ZOTONIC DRIVE THROUGH

OVERVIEW — ERLANG

▸ Functional programming language.

▸ Used in telephone switches, WhatsApp, etc.

▸ Multi-threaded, can handle millions of processes.

▸ Hot code upgrade.

▸ Rock solid.

▸ “Let it crash” error handling, gives much simpler code.

▸ Process isolation and supervision.

▸ Program the “happy path.”

ZOTONIC DRIVE THROUGH

OVERVIEW — POSTGRESQL

▸ Stable, very stable.

▸ Scales nicely with the number of CPU cores.

▸ Good join performance (not so good in MySQL).

▸ Support for JSON, Geo, full text search.

▸ No plans to support other databases.

▸ Schema (or database) per site.

▸ Sites can run without a database.

ZOTONIC DRIVE THROUGH

OVERVIEW — SWEET SPOT

▸ Semantic data.

▸ More later in the datamodel overview.

▸ Separation between data and representation.

▸ Many parallel TCP connections.

▸ Limit is the amount of memory.

▸ Single machine.

▸ Upscales very good, no need yet for distributed.

DATA MODEL

ZOTONIC DRIVE THROUGH

DATA MODEL

▸ Resources

▸ Categories

▸ Edges

▸ Predicates

▸ Medium

▸ Searching

▸ Identity

▸ Access control

ZOTONIC DRIVE THROUGH

RESOURCES / CATEGORIES

▸ Everything is a thing.

▸ A thing is called a “resource” (semantic web terminology) or “page” (for
editors and other normal humans).

▸ One table holding all resources in serialized form.

▸ Category of a resource defines what it is (person, article, keyword).

▸ Categories are organized in a hierarchy.

▸ Example: news is an article, an article is a text.

▸ Categories themselves are resources (“things”) of the category “category.”

ZOTONIC DRIVE THROUGH

EDGES / PREDICATES

▸ Edges are directed connections between resources.

▸ Every edge has a label, the predicate.

▸ An edge defines a meaningful relation between resources.

▸ Example: A book (subject) has as author (predicate) a
person (object).

▸ A predicate is a resource, of the category predicate. The
resource describes and names the predicate

ZOTONIC DRIVE THROUGH

MEDIA - IMAGES / VIDEO / DOCUMENTS

▸ Every resource can contain a single media item.

▸ This media item can be a file, embed code, or something
else.

▸ Usually we place resources with a media item in the media
category, with sub-categories image, video, audio and
document.

▸ Built-in support for resizing, image manipulation, video
processing, EXIF handling, and more.

ZOTONIC DRIVE THROUGH

SEARCHING – PIVOT / FACET

▸ Resources are stored in serialized blobs.

▸ Pivoting is the process to extract properties from those blobs and place
them in indexed columns and tables.

▸ Pivoting is done after a resource has been updated.

▸ Define special pivot tables per project.

▸ Template for the default pivot columns.

▸ Facets are used for searching, they are used to drill down in search results.

▸ Template to define the facets per site.

ZOTONIC DRIVE THROUGH

IDENTITY

▸ A person / user is a resource.

▸ Password and username are stored in the identity table,
not in the serialized data.

▸ As are other identities:

▸ Extra email addresses (primary is in the serialized data).

▸ Tokens from services like Facebook, Twitter etc.

▸ Login secrets

ZOTONIC DRIVE THROUGH

ACCESS CONTROL

▸ Access control defines what a user can see and do.

▸ Access control is done at a low level, in the models (later more about models).

▸ Default access control module:

▸ Places users into user groups.

▸ Places resources into content groups.

▸ Gives rights (view, edit, delete, link) to user groups on content groups.

▸ Gives rights to upload media, per mime-type and size.

▸ Gives rights to use certain modules.

REQUEST HANDLING

ZOTONIC DRIVE THROUGH

REQUEST HANDLING

▸ Dispatching

▸ Controllers

▸ Templates

▸ Models

ZOTONIC DRIVE THROUGH

DISPATCHING

▸ Dispatching is the process of mapping the incoming HTTP
request to a site and controller.

▸ Site configurations define the hostnames a site handles.

▸ Dispatch rules define the mapping from an URL path to a
controller (and arguments).

▸ In reverse, dispatch rules are also used to generate URLs for
resources and other pages or links.

▸ Dispatch rules are defined in files (later more).

ZOTONIC DRIVE THROUGH

CONTROLLER

▸ HTTP requests are handled by the HTTP protocol handler
Cowmachine.

▸ Controllers define callbacks for the HTTP protocol handling.
Examples: is_authorized, resource_exists, process.

▸ A controller is an Erlang module and defined in a site or Zotonic
module.

▸ Most used controllers are:

▸ controller_page: serves HTML pages for resources.

▸ controller_template: serves HTML pages from templates.

ZOTONIC DRIVE THROUGH

TEMPLATES

▸ Templates are used to generate HTML pages. Based on Django syntax.

▸ Templates can extend other templates.

▸ Templates can overrule same named templates in other modules.

▸ Templates pull their information from models, controllers pass minimal
information, like the id of the resource being handled.

▸ Notable templates:

▸ base.tpl: implements the main page structure, including head and css/js.

▸ page.tpl: used for displaying a generic resource.

▸ page.categoryname.tpl or page.name.somename.tpl to display a specific
category or uniquely named resource.

ZOTONIC DRIVE THROUGH

MODELS

▸ Used to access data.

▸ Accessible from:

▸ Templates: m.modelname.foo

▸ HTTP: https://example.test/api/model/modelname/get/foo

▸ MQTT: model/modelname/get/foo

▸ Main models:

▸ rsc: access resource data and properties, example: m.rsc[id].title

▸ edge: access edge information

▸ search: perform all kinds of searches on resources or other data

COTONIC

ZOTONIC DRIVE THROUGH

COTONIC - INFRASTRUCTURE IN THE BROWSER

▸ Javascript framework.

▸ MQTT message bus between browser and server.

▸ Topic tree in browser, connects components and browser tabs.

▸ Bridge topics to send messages in browser to server and from
server to browser.

▸ Manages web workers for authentication, file uploads and
more.

▸ Elm uses MQTT topics to access server and client models.

WIRES

ZOTONIC DRIVE THROUGH

WIRES - SIMPLE ACTIONS WITHOUT JAVASCRIPT

▸ Tags in templates, attaches actions to elements.

▸ {% wire id=“…” type=“submit” action=… %}

▸ Attaches to forms, button, and other elements.

▸ Actions like confirms, postback (to server), dialogs, show/
hide etc.

▸ Postback events route to delegate Erlang modules event
functions.

MESSAGE BUSES

ZOTONIC DRIVE THROUGH

MESSAGE BUSES

▸ Notification bus in Erlang

▸ Extension mechanism for low level, modules.

▸ Trusted messages.

▸ z_notifier and observe, with notify, first, fold, and map.

▸ MQTT bus for outside data.

▸ Untrusted user facing messages.

▸ MQTT topic tree with publish and subscribe.

DIRECTORY STRUCTURE – CODE ORGANIZATION

ZOTONIC DRIVE THROUGH

DIRECTORY STRUCTURE – CODE ORGANIZATION

▸ Sites and modules are Erlang OTP applications

▸ Zotonic is an umbrella application, containing multiple
other applications (sites, modules).

▸ apps: core modules and applications

▸ apps_user: sites, extra modules

ZOTONIC DRIVE THROUGH

DIRECTORY STRUCTURE – SITE / MODULE

▸ Erlang OTP application.

▸ Makefile for building.

▸ rebar.config to define dependencies, compile options.

▸ priv directory for assets, static files, templates.

▸ src directory for Erlang code

▸ Zotonic module indexer looks for all templates, models,
filters, actions etc. in the site and module directories.

ZOTONIC DRIVE THROUGH

DIRECTORY STRUCTURE – PRIV

▸ priv directory contains all static non erlang files.

▸ priv/zotonic_site.config for site configuration.

▸ priv/config.d/… for extra site configuration.

▸ priv/dispatch/… for dispatch files.

▸ priv/lib/… for images, css, javascript

▸ priv/lib-src/… for scss and Makefiles to generate priv/lib/ files.

▸ priv/templates/…

▸ priv/translation/… for .po files

ZOTONIC DRIVE THROUGH

DIRECTORY STRUCTURE – SRC

▸ src directory contains all erlang files, main content:

▸ src/appname.app.src

▸ src/mod_foobar.erl (or src/sitename.erl)

▸ src/models/m_mymodel.erl

▸ src/controllers/controller_foobar.erl

▸ src/filters/filter_myfilter.erl

▸ src/support/… for extra Erlang source files.

▸ Erlang file names MUST be unique. Use site/module specific prefixes.

